10
14
2015
0

[Codeforces Round #319] Modulo Sum


B. Modulo Sum
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a sequence of numbers a1, a2, ..., an, and a number m.

Check if it is possible to choose a non-empty subsequence aij such that the sum of numbers in this subsequence is divisible by m.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 1062 ≤ m ≤ 103) — the size of the original sequence and the number such that sum should be divisible by it.

The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).

Output

In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.

Sample test(s)
input
3 5
1 2 3
output
YES
input
1 6
5
output
NO
input
4 6
3 1 1 3
output
YES
input
6 6
5 5 5 5 5 5
output
YES
Note

In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.

In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by 6, that is, the sought subsequence doesn't exist.

In the third sample test you need to choose two numbers 3 on the ends.

In the fourth sample test you can take the whole subsequence.

题目大意:给出一个长度为n的序列,问能否在这个序列中选出一个非空子序列(不一定连续),使得该子序列的所有元素的和能被给出的m整除。


若m<n,求出序列的前缀和模m的值,总共有n个余数,但是余数只有m中可能,根据抽屉原理可得至少有两个前缀和的余数相等,所以选出余数相同的两个前缀和之间的元素就行了。

否则做DP,$f_{i,j}$表示处理了前i个元素,是否有可能余数为j。

话说其实判m和n的关系,直接做DP也没什么关系。。

代码在此。

Category: 题解 | Tags: DP 数学 Codeforces 数论 | Read Count: 376

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter

Host by is-Programmer.com | Power by Chito 1.3.3 beta | Theme: Aeros 2.0 by TheBuckmaker.com