11
22
2015
0

[Codeforces Round #323] Superior Periodic Subarrays


E. Superior Periodic Subarrays
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an infinite periodic array a0, a1, ..., an - 1, ... with the period of length n. Formally, . A periodic subarray(l, s) (0 ≤ l < n1 ≤ s < n) of array a is an infinite periodic array with a period of length s that is a subsegment of array a, starting with position l.

A periodic subarray (l, s) is superior, if when attaching it to the array a, starting from index l, any element of the subarray is larger than or equal to the corresponding element of array a. An example of attaching is given on the figure (top — infinite array a, bottom — its periodic subarray (l, s)):

Find the number of distinct pairs (l, s), corresponding to the superior periodic arrays.

Input

The first line contains number n (1 ≤ n ≤ 2·105). The second line contains n numbers a0, a1, ..., an - 1 (1 ≤ ai ≤ 106), separated by a space.

Output

Print a single integer — the sought number of pairs.

Sample test(s)
input
4
7 1 2 3
output
2
input
2
2 1
output
1
input
3
1 1 1
output
6
Note

In the first sample the superior subarrays are (0, 1) and (3, 2).

Subarray (0, 1) is superior, as a0 ≥ a0, a0 ≥ a1, a0 ≥ a2, a0 ≥ a3, a0 ≥ a0, ...

Subarray (3, 2) is superior a3 ≥ a3, a0 ≥ a0, a3 ≥ a1, a0 ≥ a2, a3 ≥ a3, ...

In the third sample any pair of (l, s) corresponds to a superior subarray as all the elements of an array are distinct.

题目大意:给出一个从0开始编号的无限循环序列a,它满足$a_i=a_{i\bmod n}\left(i\geq n\right)$,定义它的循环子段b$\left(l,s\right)\left(0\leq l<n,1\leq s<n\right)$为满足$b_i=a_{\left(i-l\right)\bmod s+l}$的循环序列。求a有多少个循环子段满足$b_i\geq a_i\left(i\geq l\right)$。


对于一个确定的s,有$a_i\geq a_j\left(i\equiv j\pmod{\gcd\left(n,s\right)}\right)$。于是可以枚举$g=\gcd\left(n,s\right)$,分别进行计算。考虑把$a_0...a_{n-1}$按照对g取模的值分成$\frac{n}{g}$组,显然b序列中的所有元素都必须是其对应的组中最大的那个。所以只需两个指针扫一下,把符合$\gcd\left(n,s\right)=g$的序列加入答案。注意扫的时候要注意一下循环序列式循环的。

因为g一定是n的因数,而n的因数个数大约有$\sqrt n$个,所以复杂度为$\mathcal{O}\left(n\sqrt n\right)$。

代码在此。

Category: 题解 | Tags: 数学 Codeforces 数论 | Read Count: 537

登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter

Host by is-Programmer.com | Power by Chito 1.3.3 beta | Theme: Aeros 2.0 by TheBuckmaker.com